Motivation

During the study of astrophysics, students
are often exposed to problems, which must
be solved using standard numerical
methods, like optimization, integration,
differentiation or Monte Carlo simulation.
With the power of the Python
programming language and the huge
amount of scientific libraries it is very
often a simple task. Unfortunately,
sometimes students are not able to solve
the problems, due to generally poor
programming skills (not only in Python).
Developed lectures about numerical
methods in astrophysics is the way to help
them.

Optimization problem

One of the typical tasks in the analysis of
the binary stars is the derivation of the
spectroscopic orbital parameters from the
observations, namely from the radial

velocity curve fitting. Usually one can use a

method known as differential corrections,
but for educational purpose we used
genetical algorithms, which are more
robust and the results can be used as the
first guess for the parameters. We used the
module PyPIKAIA, Python version of the
Fortran subroutine PIKAIA.

O
_—
jupyter
v

Burgers' equation

Burgers' equation is a fundamental partial differential equation
occuring in various areas of applied mathematics, such as fluid
mechanics, nonlinear acoustics, gas dynamics, traffic flow. It is

named for Johannes Martinus Burgers (1895-1981). -- Wikipedia

Problem 1: Inviscid Burgers'equation

au.+l‘au =0
ot ox

find numerical solution on the interval x = [1,2]

and initial conditionsu = 1 forx < 1.5and u = 0 forx > 1.5.

In [2]: dimport numpy as np

from matplotlib import pyplot as plt
from ipywidgets import interact

In [3]: def lax_method(u, dx, dt, v, time):
"""Solution using Lax method"""
for t in range(time):

uu = np.copy(u)

for i in range(1l, len(u)-1):

uf[i] = 0.5 * (uu[i+1] + uu[i-1]) \

- 0.5 * v * dt / dx * (uu[i+l]

return u

In [4]: @interact(dx=(le-3, le-1, le-3), dt=(le-3, 1, le-2),
velocity=(0.01, 1, le-2),

"""Interactivly plot the result"""
initial conditions
X = np.linspace(1l, 2, 1/dx)

u = np.ones_like(x)

ufx > 1.5] =0

plot the result
plt.title("Burgers' equation")

plt.xlabel("x")
plt.ylabel("u")

plt.plot(x, lax_method(u, dx, dt, velocity, time))

plt.grid(True)

dx

dt
velocity
time

None

10

0.8

0.6

04

0.2

0.0
10 12

14

Burgers' equation

18

20

time=(0, 500))
def plot_result(dx=0.01, dt=0.01, velocity=0.1, time=200):

0.01

0.01

0.1

200

- uul[i-1])

22

Feel free to download, modify and run this notebook.

SARYK/
oW Wy
Kog LST oo %
> C
& » &
> X Z
> NN O 4
S = -
° ‘l\Z\» g °
3 S
% "
%, e QY S
R o
* Reryp WK

Hydrodynamics in cube

Solving of the hydrodynamics equations in
the various astrophysical configurations is
one of the major problem in numerical
astrophysics. For fast and furious
computing it is necessary to use different
languages instead of Python. But for
simple problems and educational purposes
Python can be used very well. Basic
principles of the computational fluid

dynamics can be illustrated on the solution

of the Burgers' equation, a simple
nonlinear advection equation. With the
help of the interactive capabilities of the
IPython Notebook, students can easily
explore the influence of various
parameters, like time or space steps,
advective velocity or initial conditions.

Inspiration

J.R. Johansson. Lectures on scientific
computing with Python. https://github.com/
jrjohansson/scientific-python-lectures.

P. Charbonneau. Genetic Algorithms in
Astronomy and Astrophysics. Astrophysical
Journal Supplement v.101, p.309, 1995.

M. Zingale. pyro: A teaching code for

computational astrophysical hydrodynamics.

